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We examine small deviations from axial symmetry in a solid-propellant rocket motor,
and describe a ‘bath-tub-vortex’ effect, in which substantial axial vorticity is generated
in a neighbourhood of the chamber centreline. The unperturbed flow field is essentially
inviscid at modest Reynolds numbers, even at the chamber walls, as has long been
known, but the inviscid perturbed flow is singular at the centreline, and viscous terms
are required to regularize it. We examine perturbations sufficiently small that a linear
analysis is valid everywhere (εRe small, where ε is a measure of the perturbation
amplitude and Re is a Reynolds number), and larger perturbations in which a
nonlinear patch is created near the centreline of radius O(

√
ε). Our results provide

an explanation of swirl experimentally observed by others, and a cautionary note
for those concerned with numerical simulations of these flows, whether laminar or
turbulent.

1. Introduction
It has been known since the pioneering work of Taylor (1956) that interior flows

generated by a flux at the boundary can (indeed must) satisfy the no-slip condition
without benefit of viscosity, since the boundary layer is blown off by the injection. An
important example is the flow inside a solid-propellant rocket motor, a problem that
was first discussed by Culick (1966): he constructed an inviscid rotational solution
for flow in a long right-circular cylinder with sidewall injection. Curiously, there has
been little if any work on flows in channels with more complex cross-sections, despite
the fact that solid-propellant grain configurations are seldom circular (Sutton 1992),
and it is this issue that is the subject of the present paper. More precisely, we are
concerned with flows that are not axisymmetric, either because the cross-section is
not axisymmetric, or because of variations in the injection (burning) rate around
the circumference. A grain configuration that is commonly used in rocket motors is
star-shaped, and injection at the star boundary (associated with the gasification of
the solid) generates a substantial azimuthal flow component. Little is known about
such flows.

The general problem is not amenable to analysis, and we do not consider it here:
instead, we consider perturbations of Culick’s solution. We find that viscous terms
cannot be neglected everywhere, although there is no boundary layer, and a linear
analysis is only valid if εRe� 1, where ε is a measure of the perturbation and Re is
an appropriate Reynolds number. Otherwise a nonlinear axial patch of radius ∼√ε
exists in which the axial vorticity is O(1). This vorticity is an increasing function of



284 S. Balachandar, J. D. Buckmaster and M. Short

D

y

z

L

vn

vn

Figure 1. Rocket chamber configuration.

Re, with magnitude ∼ Re when εRe � 1. Our general conclusion is that modest
deviations from symmetry can have profound effects on the nature of the flow field.

Our analysis proceeds as follows. We show why there can be no sidewall boundary
layer in a long cylinder with sidewall injection; we formulate the equations for a
large-aspect-ratio cylinder; and we identify Culick’s solution for a circular cross-
section. We then consider small inviscid perturbations to Culick’s solution and show
that the axial vorticity, a perturbation quantity, is singular like 1/r2 as r → 0. This

solution can be regularized by viscous terms, important on the scale r = O(1/
√
Re),

and in this viscous core the axial vorticity is O(εRe), which must be small. A complete
description of the perturbation flow field is presented, both within the viscous core
and in the surrounding inviscid annulus. When εRe is not small it is shown that
there is a nonlinear patch on the scale r = O(

√
ε) embedded in the linearly perturbed

inviscid flow, and that in this patch the axial vorticity is O(1). Again, viscous terms
are needed within a viscous core to regularize the solution as r → 0, and because
of this the vorticity is an unbounded function of Re. Solutions within the nonlinear
patch are constructed numerically.

2. Rocket-chamber flows and blow-off of the boundary layer
A solid-propellant rocket motor consists of a chamber, lined with propellant,

to which a nozzle is attached. Combustion processes in the neighbourhood of the
propellant surface heat it, causing it to regress, generating voluminous quantities of
gas. Because of the disparity between the gas density and the solid density, the gas
velocity normal to the surface is much greater than the regression rate, so that on
gas-phase time scales the flow may be modelled by flow injection from a fixed surface.
That this surface cannot support a boundary layer is apparent from the following
argument.

Consider the rocket chamber shown in figure 1 which, for the purposes of the im-
mediate argument, we will suppose is two-dimensional (plane). We seek a description
of the flow field in terms of the classical dichotomy of an inviscid irrotational core
flow and Prandtl boundary layers. The core flow is

(v, w) =
2vn
D

(
−y +

D

2
, z

)
(2.1)

where vn is the wall-normal injection velocity and D is the separation distance between
the top and bottom walls. Then the speed at the edge of the boundary layer on the
lower wall is

w(z) =
2vnz

D
, (2.2)

as in Hiemenz flow. Unlike the classical Hiemenz configuration, however, there is a
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substantial blowing velocity and the boundary conditions at the wall are

(v, w) = (vn, 0) at y = 0. (2.3)

A boundary layer solution, if it existed, would be valid for values of z � D, a region
well removed from endwall effects.

The inviscid solution (2.1) is characterized by a rate of strain

α =
2vn
D

(2.4)

from which a characteristic speed
√
αν can be defined (ν is the kinematic viscosity),

a measure of v in the Hiemenz solution (Batchelor 1967). Thus for a boundary layer
solution to exist, necessarily

vn 6
√
αν, i.e. vn 6

2ν

D
. (2.5)

With ν = 1.49 × 10−3 m2 s−1, a value appropriate for a temperature of 3000 K, and
D = 0.6 m, then 2ν/D ∼ 5× 10−3 m s−1 which is much smaller than a typical blowing
velocity (∼ 1). Indeed, a typical regression rate of the solid is ∼ 10−2 m s−1. But the
difficulty is not merely one identified from quantitative considerations: the length
(ν/α)1/2 is characteristic of the boundary layer thickness (Batchelor 1967), so that we
require √

ν

α
� D

2
, i.e. vn � 2ν

D
, (2.6)

in contradistinction with the inequality (2.5). Thus blow-off is assured. There is, of
course, a large literature on the effects of strong blowing on boundary layers, e.g.
Cole & Aroesty (1968).

3. Inviscid flow in a large-aspect-ratio chamber
In the absence of a boundary layer we seek rotational solutions of Eulers equations

that satisfy the no-slip condition at the wall in addition to the blowing condition. Note
that there is no difficulty in prescribing the values of all three velocity components
at the wall where the characteristics (streamlines) enter the domain. Only if the flow
were potential would this not be possible, equivalent to the simultaneous specification
of Dirichlet and Neumann data for a harmonic function.

Figure 1 is still appropriate, but now cylindrical with arbitrary cross-section. Also
we place the origin of the coordinate system on some appropriately chosen axis,
rather than at the sidewall. We have

∇ · q = 0, q · ∇q = −1

ρ
∇p, q = (u, v, w). (3.1)

The variables are now scaled in the following fashion: u and v with vn; w with 2vnL/D;
x and y with D/2; z with L; p with 4ρv2

nL
2/D2. Moreover we write the scaled pressure

as

p̄ = P0(z) +
D2

4L2
P1 (3.2)

and assume that D/L� 1, whence

∇̄ · q̄ = 0, q̄ · ∇̄
(
ū
v̄

)
=

( −∂P1/∂x̄
−∂P1/∂ȳ

)
, q̄ · ∇̄w̄ = −dP0

dz
. (3.3)
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These equations have a separable solution of the form:

w̄ = zw̃(x̄, ȳ), ū = ũ(x̄, ȳ), v̄ = ṽ(x̄, ȳ), P0 = − 1
2
Cz2, P1 ≡ P1(x̄, ȳ), (3.4)

with C a constant, whereupon (3.3) reduce to

∂ũ

∂x̄
+
∂ṽ

∂ȳ
+ w̃ = 0, (3.5a)

ũ
∂w̃

∂x̄
+ ṽ

∂w̃

∂ȳ
+ w̃2 = C, (3.5b)(

ũ
∂

∂x̄
+ ṽ

∂

∂ȳ

)(
ũ
ṽ

)
=

( −∂P1/∂x̄
−∂P1/∂ȳ

)
. (3.5c)

These equations describe the flow field for a large-aspect-ratio chamber when z � D.
The boundary conditions on the chamber walls are

w̃ = 0, (ũ, ṽ) · n = 1, (ũ, ṽ)× n = 0, (3.6)

where n is the inner normal.
Our development of the asymptotic description here has been mechanical, for the

ingredients are clear from an examination of Taylor’s work, presented in his trademark
physical style (Taylor 1956). But that the pressure to leading order is uniform across
the chamber is a familiar consequence of the slenderness; and the linearity of w̄ with
z simply reflects the fact that the total amount of injected fluid which supplies the
axial flow grows linearly with z when vn is constant.

The solution for a circular cylinder of unit radius, first given by Culick (1966), is

ṽr = −1

r̄
sin ( 1

2
πr̄2), w̃ = π cos ( 1

2
πr̄2), C = π2. (3.7)

Note that there are no corresponding axisymmetric solutions with swirl when ṽθ
vanishes at the wall, for azimuthal momentum conservation requires

ṽθr̄ = const (3.8)

(conservation of angular momentum for the radially moving flow). Should ṽθ not
vanish at the wall, a case we discuss in § 9.1, it is apparent that ṽθ is singular on the
centreline in the inviscid context. Regularization comes from reinstating the viscous
terms, a general theme in our discussion whenever there is swirl, axisymmetric or not.

It is not difficult to show that the axisymmetric equations reduce to the plane
equations under the substitutions r̄ṽr → ṽ, r̄2 → ȳ, w̃ → 2w̃, C → 4C , whence the
solution in the plane case is

ṽ = − sin ( 1
2
πȳ), w̃ = 1

2
π cos ( 1

2
πȳ), C = 1

4
π2. (3.9a–c)

Compressible counterparts to these solutions are discussed by Balakrishnan, Liñán
& Williams (1991, 1992). We will not discuss compressible effects in this paper.

4. Finite Reynolds number solutions
The viscous counterparts to (3.5b, c) are

ũ
∂w̃

∂x̄
+ ṽ

∂w̃

∂ȳ
+ w̃2 = C +

1

Re
∇2
cw̃, (4.1a)
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Figure 2. Variations of pressure gradient C with Reynolds number Re for steady viscous solutions.(
ũ
∂

∂x̄
+ ṽ

∂

∂ȳ

)(
ũ
ṽ

)
=

(
−∂P1/∂x̄+ Re−1∇2

c ũ

−∂P1/∂ȳ + Re−1∇2
c ṽ

)
, (4.1b)

∇2
c ≡ ∂2

∂x̄2
+

∂2

∂ȳ2
, (4.1c)

where Re = vnD/2ν. Equation (3.5a) and the boundary conditions (3.6) are unchanged.
The above equations are solved numerically for both axisymmetric and planar ge-
ometries using Chebyshev spectral discretization along the normal to the wall. The
steady-state solution is obtained by Newton iteration. Numerical solution leads not
only to a description of the velocity field, but also to a description of the manner in
which the pressure gradient C varies with Re, figure 2. Note that the large Re values
are consistent with (3.7c), (3.9c). The small Reynolds number behaviour (deduced
analytically) is

C =
16

Re
+ 12 + O(Re) (axisymmetric),

C =
3

Re
+

81

35
+ O(Re) (plane),

 (4.2)

with corresponding velocity fields

ṽr = (r̄3 − 2r̄), w̃ = 4(1− r̄2) (axisymmetric),

ṽ = 1
2
(ȳ3 − 3ȳ), w̃ = 3

2
(1− ȳ2) (plane).

}
(4.3)

(We are not suggesting that this limit is uniformly valid with respect to the small
parameter D/L.)

There are regular viscous perturbations to the inviscid solutions (3.7), (3.9), relevant
when Re is large, but we do not show them here.

Results intermediate between the limiting results (3.7), (3.9), (4.2) and (4.3) are
shown in figures 3 and 4, from which it is clear that the inviscid limit provides
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Figure 3. Axisymmetric viscous steady velocity field.

an accurate approximation for Re > 100. Note that in the plane case ṽ varies
monotonically with ȳ and is a maximum at the wall, whereas this is not the case for
the axisymmetric problem.

Finite Reynolds number calculations for axisymmetric flows using a k–ε turbulence
model have been reported by Sabnis, Giebling & McDonald (1989).

5. Perturbations of the circular-cylinder flow (linear analysis)
Consider a chamber whose cross-section is defined by

r̄ = 1 + εR(θ), ε� 1. (5.1)

We shall construct perturbations to the solution (3.7), generated in this way. Our
analysis is also capable of accounting for perturbations generated in other ways, for
example by variations in the injection speed vn. Consider (3.5) and (3.6) dropping the
tildes and overbars. We seek solutions

w = w0 + εw1, vr = vr0 + εvr1 , vθ = εvθ1
, P1 = p0 + εp1, Ω = εΩ1, (5.2)
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where Ω is the magnitude of the axial vorticity and vr0 , w0 is the solution (3.7). Since
the axial vorticity transport equation is

(q̂ · ∇)Ω − wΩ = 0, q̂ = (u, v, 0), (5.3)

Ω1 satisfies the equation

1

Ω1

∂Ω1

∂r
= −πr cot ( 1

2
πr2), (5.4)

whence

Ω1 sin ( 1
2
πr2) = const. (5.5)

It is tempting to eliminate the singular behaviour at r = 0 by setting the constant
equal to 0 so that the perturbation cross-flow is a potential flow (albeit not harmonic,
since it is not solenoidal). But in general such a flow cannot simultaneously satisfy
the boundary conditions (3.6), and, as we have noted, this deficiency cannot be
accommodated by placing a boundary layer at the wall, for such a boundary layer
would necessarily be blown off. To regularize the solution, viscous terms must be
retained and (4.1) must be considered. The viscous terms are important on the scale
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r = O(1/
√
Re) where Ω1 = O(Re) so that the axial vorticity Ω is O(εRe). Thus the

perturbations are only small everywhere if εRe is small. Later we shall relax this
restriction, meantime noting that the linear analysis of this section is relevant to the
larger context.

6. Solution of the vorticity equation

When Re� 1 the inviscid solution (5.5) is correct provided r � 1/
√
Re. Otherwise,

Ω1 satisfies the equation

−1

r
sin ( 1

2
πr2)

∂Ω1

∂r
= π cos ( 1

2
πr2)Ω1 +

1

Re
∇2Ω1 (6.1)

which, in the viscous core r = O(1/
√
Re), can be approximated by

−πs
2

∂Ω1

∂s
= πΩ1 +

∂2Ω1

∂s2
+

1

s

∂Ω1

∂s
− n2

s2
Ω1, (6.2)

where s = r
√
Re and we have assumed an angular dependence einθ for some non-

vanishing positive integer n. (The special and simple case n = 0 is discussed later.)
Because the perturbations that we consider are of this nature, there are no perturba-
tions to the constant C of (3.5b).

Solutions of (6.2) behave like s±n as s→ 0, and we define Hn(s) to be the solution
that satisfies the condition

lim
s→0

Hns
−n = 1. (6.3)

Also, Hn must behave like 1/s2 as s→∞ in order to match with the inviscid solution
(5.5). The required solution is

Hn(s) =

sn
∫ 0

−1/4

dp eπps
2

(−p)n/2(1 + 4p)n/2−1

∫ 0

−1/4

dp (−p)n/2(1 + 4p)n/2−1

, (6.4)

which can be evaluated in terms of elementary functions when n is an even integer.
For large values of s,

Hn ∼
π−1−n/2

∫ 0

−∞
dp ep(−p)n/2

s2
∫ 0

−1/4

dp (−p)n/2(1 + 4p)n/2−1

≡ a

s2
. (6.5)

Then if we write

Ω1 = A cosec ( 1
2
πr2)einθ (6.6)

in the inviscid annulus (cf. (5.5)),

Ω1 =
2ARe

aπ
Hn(s)e

inθ (6.7)

in the viscous core. These formulas provide a description of Ω1 everywhere to within
a constant (A). Graphs of Hn(s)/a are shown in figure 5 for various values of n. Hn

vanishes both on the axis and as s → ∞, with a maximum at some finite value of s.
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Figure 5. Hn(s)/a against s for n = 1 (solid), n = 2 (dotted), n = 3 (dashed), n = 4 (dash-dot)
and n = 6 (dash-dot-dot-dot).

As n increases the value of the maximum decreases, and its location shifts radially
outwards.

7. The velocity field
The following estimates are valid within the viscous core:

vr1, vθ1 = O(
√
Re), w1 = O

(
1

Re

)
, Ω1 = O(Re). (7.1a–c)

The first and third of these follow from the fact that Ω1 is singular like 1/r2 in the
inviscid annulus; the second follows from the fact that w1 vanishes like r2 in the
annulus (see (8.5)). Then, to leading order within the core,

−1

r

∂

∂r
(rvθ1) +

1

r

∂vr1

∂θ
= Ω1,

∂

∂r
(rvr1) +

∂vθ1

∂θ
= 0, (7.2)

so that a stream function may be defined (vr1 = (1/r)∂ψ/∂θ, vθ1 = −∂ψ/∂r) and

∂2ψ

∂s2
+

1

s

∂ψ

∂s
− n2

s2
ψ =

2AHn(s)

aπ
einθ ≡ f. (7.3)

The solution that is regular at the origin is

ψ = C1s
neinϑ +

sn

2n

∫ s

0

ds fs−n+1 − s−n

2n

∫ s

0

dsfsn+1 (7.4)

and we must choose C1 = −(1/2n)
∫ ∞

0
ds e−inθfs−n+1 so that

ψ ∼ −2Aeinϑ

πn2
, vr1 ∼ −2iA

√
Reeinθ

πns
as s→∞. (7.5a, b)

In the inviscid annulus vr1 is singular like 1/r, consistent with the 1/r2 singularity
in Ω1, and this behaviour matches (7.5b). We now turn to the solution in the inviscid
annulus.



292 S. Balachandar, J. D. Buckmaster and M. Short

8. The inviscid annulus, 1/
√
Re� r 6 1

Consider continuity, (3.5a), and the definition of Ω: these can be used to express
vθ1

and vr1 in terms of Ω1 and w1. Thus

in

r
vr1 = Ω1 +

∂vθ1

∂r
+

1

r
vθ1
, (8.1)

and

vθ1
= r−1+n

[
C2 +

1

2n

∫ r

1

dr r2−ng
]

+ r−1−n
[
vθ1

(1)− C2 − 1

2n

∫ r

1

dr r2+ng

]
(8.2)

where

g ≡ −inw1

r
− 1

r2

∂

∂r
(r2Ω1) (8.3)

and C2 is determined by evaluating (8.1) at r = 1, whence

0 = invr1 (1) + nvθ1
(1)− A− 2nC2. (8.4)

In addition, the perturbed z-momentum equation, when solved for w1, yields

w1 = sin2

(
πr2

2

)[
w1(1)−

∫ r

1

dr1vr1π
2r2

sin2(πr2/2)

]
, (8.5)

from which we conclude that w1 vanishes like r2 as r → 0 (cf. (7.1b)). Thus g vanishes
like r as r → 0, and with this information we can examine the small-r behaviour of
vθ1

from (8.2). Unacceptable singular behaviour (r−1−n, which would imply improperly
large values of vθ1 in the viscous core) can only be eliminated if

vθ1
(1)− C2 − 1

2n

∫ 0

1

dr r2+ng = 0 (8.6)

and this closes the problem and permits the evaluation of A, the vorticity amplitude
(cf. (6.6)).

Solutions can be constructed in the following fashion: We guess w1 and use (6.6),
(8.4), (8.6) to calculate the constant A; vθ1

is then determined from (8.2), followed by
vr1 from (8.1); and then a new estimate for w1 follows from (8.5) and so on.

Boundary values at r = 1 must be assigned, and there are various possibilities. If
the cross-section is unperturbed but the injection velocity is

vn = 1− εeinθ (8.7)

then

vr1 (1) = einθ, vθ1
(1) = 0, w1(1) = 0. (8.8)

If the injection velocity is fixed but the cross-section is perturbed, namely

r = 1− εeinθ, (8.9)

a shift in the boundary conditions (3.6) to r = 1 is equivalent to

vr1 (1) = einθ, vθ1
(1) = 0, w1(1) = −π2einθ. (8.10)

In this case the lowest-order relevant mode corresponds to n = 2, as the case n = 1 is
equivalent to mere displacement of the circular boundary without substantive effect
on the flow field. Solutions for both these cases are shown in figures 6 and 7.



Generation of axial vorticity in a rocket chamber 293

1.2

1.1

1.0

0.9

0.8
0 0.2 0.4 0.6 0.8 1.0

rvr1

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.1

0.2

0.3

0.4

–ivh1

w1

r

Figure 6. The behaviour of vr1 , −ivθ1
and w1 in the inviscid annulus for the perturbed velocity

problem with the modes n = 2 (solid lines, Ā = 3.397), n = 3 (dotted lines, Ā = 4.6016), n = 4
(dashed lines, Ā = 5.7285) and n = 5 (dot-dash lines, Ā = 6.8061). Here A = iĀ.

Note that in this section we have calculated perturbations that are linear in ε
and have azimuthal variations ∼ einθ . Additional axisymmetric perturbations can be
calulated, some of which are proportional to 1/Re (viscous corrections to the Culick
solution), and some of which are small because D/L is small (corrections to the
asymptotic description that satisfies (3.5)). No assumptions need be made about the
relative magnitude of these various terms in this linear context, and those that we
have calculated are distinguished from the others by their azimuthal variations and
by the swirl.
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(dashed lines, Ā = −1.4102) and n = 5 (dot-dash lines, Ā = −0.8467). Here A = iĀ.

9. Numerical solution of the linear problem

In addition to the asymptotic treatment, we have calculated the small-perturbation
solutions by numerically solving the linearized equations for finite Reynolds numbers.
The numerical procedure is similar to what we describe in § 10, sans iterations. Care
is required in guaranteeing proper behaviour of the solution in the neighbourhood of
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Figure 8. Perturbation solution when the injection velocity is perturbed, n = 1.

the origin. For the velocity components to be analytic there, we require, as r → 0,

vr1 →
{
bor for n = 0

bnr
n−1 for n 6= 0,

(9.1a)

vθ1 →
{
cor for n = 0
ibnr

n−1 for n 6= 0,
(9.1b)

w1 → dnr
n for all n, (9.1c)

for certain constants bj , cj , dj . This behaviour is consistent with the vorticity vanishing
as rn.

Figures 8–10 show the vorticity and velocity perturbations generated by the injection
perturbation (8.7) for n = 1, 2, 3, and several values of Re. The asymptotic conclusions
vr1 , vθ1

= O(
√
Re), w1 = O(1/Re), Ω1 = O(Re) within the viscous core of diameter

O(1/
√
Re) are clearly evident in these figures. The radial velocity shows 1/r behaviour

and the axial vorticity shows 1/r2 behaviour within the inviscid annulus, singular
behaviour as the origin is approached that is regularized within the viscous core. The
intensity of the viscous core, measured both by the magnitude of the perturbations
within it and its narrowness, decreases with increasing mode number. Note that vθ1

and vr1 do not vanish at r = 0 when n = 1, but do vanish there when n 6= 1, behaviour
noted in the context of jet flows by Batchelor & Gill (1962).

Figures 11 and 12 show the corresponding results for n = 2 and n = 3 when the
cross-section is perturbed with the injection velocity fixed, (8.9).
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Figure 9. Perturbation solution when the injection velocity is perturbed, n = 2.
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Figure 10. Perturbation solution when the injection velocity is perturbed, n = 3.



Generation of axial vorticity in a rocket chamber 297

0

0.25

–0.25

0 0.25 0.50 0.75 1.00

–10
0 0.25 0.50 0.75 1.00

r
0 0.25 0.50 0.75 1.00

r

0

–0.1

0 0.25 0.50 0.75 1.00

v r
1/

(R
e)

1/
2

v h
1/(

R
e)

1/
2

X
1/

R
e

0

–0.1

w
1

Re
10
100
1000

–0.50

–0.2

–0.3

–0.2

–0.3

–0.4

–8

–6

–4

–2

0

Figure 11. Perturbation solution when the radius is perturbed, n = 2.
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9.1. The case n = 0

Here an exact solution can be constructed without approximation, since vθ and Ω
satisfy the equations

vr0
∂Ω

∂r
− w0Ω =

1

Re

1

r2

∂

∂r

(
r
∂Ω

∂r

)
,

Ω = −1

r

∂

∂r
(rvθ),

 (9.2)

Thus
Ω

Ω(0)
= exp

[
−Re

∫ r

0

dr

r
sin ( 1

2
πr2)

]
= exp [− 1

2
ReSi ( 1

2
πr2)] (9.3)

(see figure 13a) which behaves like

exp (− 1
4
πs2) ≡ H0(s) (9.4)

in the viscous core when Re is large, and is exponentially small in the inviscid annulus.
Here Si(x) is the Sine Integral; vθ is obtained by quadrature, figure 13(b), and for
large Re has the uniformly valid representation

Re

Ω(0)
vθ ∼ −2

π

√
Re

s
[1− e−πs

2/4] (9.5)

which behaves like −2/πr in the inviscid annulus.
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10. Solution when ε� 1 and ε� 1/Re or ε = O(1/Re)

The linear analysis (n 6= 0) of the previous sections is of little if any practical
interest when applied everywhere in the chamber, since the applied perturbations
must necessarily be very small for realistic values of the Reynolds number. And so
in this section we consider larger perturbations for which part of the perturbation
flow field is nonlinear. With the earlier analysis this constitutes a complete description
when ε� 1, for any value of Re.

The linear analysis is still correct when r = O(1) and our starting point is the
small-r behaviour:

Ω ∼ ε2Aeinθ

πr2
(see (6.6)), (10.1)

εvr1 ∼ −εi2Aeinϑ

nπr
(10.2)

(from (8.1), noting that vθ1
vanishes at least as rapidly as r);

vr0 ∼ − 1
2
πr, w ∼ π. (10.3)

From these it is apparent that vr0 and εvr1 are comparable when r = O(
√
ε). On this

scale there is a nonlinear description in which

Ω,w = O(1), vr, vθ = O(
√
ε). (10.4)

We shall call this region the nonlinear patch. When εRe = O(1), viscous terms are
important on the same scale; when εRe � 1, viscous terms are only important on a
smaller scale, defining a viscous core.

In the scaled variables appropriate for the nonlinear patch (r =
√
εr+, etc.) we have

Ω+ =
1

r+

∂v+
r

∂θ
− 1

r+

∂

∂r+
(r+v+

θ ), (10.5a)

u+ ∂w
+

∂x+
+ v+ ∂w

+

∂y+
+ w+2 = π2, (10.5b)

1

r+

∂

∂r+
(r+v+

r ) +
1

r+

∂v+
θ

∂θ
+ w+ = 0, (10.5c)

v+
r

∂Ω+

∂r+
+
v+
θ

r+

∂Ω+

∂θ
= w+Ω+ +

1

εRe
∇+2

Ω+. (10.5d)

The appropriate solution of (10.5b) is

w+ = π. (10.6)

Then, writing

v+
r = − 1

2
πr+ + V+

r , (10.7)

continuity, (10.5c), becomes

1

r+

∂

∂r+
(r+V+

r ) +
1

r+

∂v+
θ

∂θ
= 0 (10.8)

which can be satisfied by the introduction of the stream function Ψ+, namely

V+
r =

1

r+

∂Ψ+

∂θ
, v+

θ = −∂Ψ
+

∂r+
, (10.9)
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Figure 14. Contours of vorticity (left) and stream function (right) for n = 1 and εRe = 1.0.

whence

Ω+ = ∇+2
Ψ+. (10.10)

The vorticity transport equation becomes(
− 1

2
πr+ +

1

r+

∂Ψ+

∂θ

)
∂Ω+

∂r+
− 1

r+

∂Ψ+

∂r+

∂Ω+

∂θ
= πΩ+ +

1

εRe
∇+2

Ω+. (10.11)

Matching conditions as r+ → ∞ are defined by (10.2), (10.3). More precisely, any
linear perturbation in the core can be expressed as a Fourier sum of terms of this
kind. We shall restrict attention to a single mode, with

Ψ+ → −2

n2π
cos (nθ), Ω+ ∼ 2

πr+2
cos (nθ) as r+ →∞, (10.12)

corresponding to the small-r linear description

vr ∼ − 1
2
πr +

ε2

nπr
sin (nθ), Ω ∼ ε2 cos (nθ)

πr2
. (10.13)

We have chosen A = 1 (without loss of generality) since it can be absorbed into ε.
Equations (10.10), (10.11) are solved numerically, subject to the boundary conditions

(10.12), using spectral methods for various values of εRe and n. A Fourier Galerkin
scheme is used along the circumferential direction and Chebyshev collocation is used
along the radial direction. With increasing εRe, the effect of nonlinearity increases and
correspondingly the resolution requirement also increases. The results to be presented
below are obtained using a 21-mode expansion along the circumferential direction,
and 51 points along the radial direction. This resolution was found to be adequate
over the range of εRe considered here. Solutions for Ψ+ and Ω+ were obtained
through Newton iteration. As r → 0 appropriate decay is required of both vorticity
and stream function consistent with the analytical behaviour for velocity given in
(9.1). Such accurate description of the solution near the origin is important for rapid
convergence of the iterative procedure. For all cases considered rapid convergence is
obtained within about ten iterations. For computational purposes the outer boundary
is chosen to be finite and the results to be presented below are for r+ = 4. Numerical
sensitivity of the results to the placement of the outer boundary has been verified to
be minimal.

Figure 14 shows contours of vorticity and stream function plotted for the case n = 1
and εRe=1. The vorticity exhibits a dipole-like pattern with a peak vorticity magnitude
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Figure 15. Contours of vorticity and stream function for n = 1 and εRe = 10.0.
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Figure 16. Contours of vorticity and stream function for n = 2 and εRe = 1.0.
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Figure 17. Contours of vorticity and stream function for n = 2 and εRe = 25.0.

of approximately 0.416 at r ≈ 0.92. As εRe increases, the vorticity maximum increases
(see figure 15 for εRe = 10) and the top–bottom symmetry of the pattern is further
destroyed. At small εRe the vorticity peaks are separated by 180◦. With increasing
nonlinearity, the phase relation of the higher circumferential harmonics is such that
the angular separation of the points of peak vorticity decreases. The radial location
of peak vorticity draws closer to the origin.
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Figure 18. Contours of vorticity and stream function for n = 3 and εRe = 10.0.
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Figure 19. Contours of vorticity and stream function for n = 4 and εRe = 10.0.

Figure 16 shows the vorticity and stream function contours for the case n = 2,
εRe = 1. The vorticity distribution exhibits a quadrapole pattern with the peak
vorticity substantially less than that for n = 1, figure 14. With increasing εRe (see
figure 17 for εRe = 25) the pattern is distorted and the peak vorticity occurs closer
to the origin. Figures 18 and 19 show the solutions for n = 3 and n = 4, revealing
sextapole and octapole patterns. The maximum vorticity progressively decreases with
n, and the symmetry is destroyed with increasing Reynolds number. Figure 20 shows
near-origin views of the velocity vector plot (V+

r , v
+
θ ) for the four cases n = 1, 2, 3, 4,

at εRe = 25.
The scaling of maximum vorticity with Reynolds number is shown in figure 21. A

near linear scaling of the form Ω+
peak = cεRe is observed with the coefficient c taking

values 0.424, 0.147, 0.074, and 0.043 when n = 1, 2, 3, 4. The radial location of the
vorticity peak is shown in figure 22(a). With increasing εRe the axial vortices first
move rapidly towards the origin, but then move away. This behaviour can be seen in
the n = 1, 2 cases and is probably a feature of the solutions for larger n at sufficiently
large Reynolds numbers. Finally we quantify the distortion from the regular pole
patterns in terms of the smallest angular separation between two adjacent vorticity
peaks (see figure 22b). For vanishing Reynolds number, the separation is 180/n◦. The
effect of the nonlinearity is significant for n = 1, 2 at the Reynolds numbers we have
considered.
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Figure 22. (a) The radial location of the vorticity peak, and (b) the angular separation between
two vorticity peaks, as a function of Reynolds number.

11. Concluding remarks
Our main conclusions can be summarized succintly. Small deviations from axial

symmetry in a solid-propellant rocket-motor flow lead to large values of axial vorticity,
and to failure of the inviscid solution near the centreline. Our results make clear that,
in numerical simulations, mesh points must be concentrated in a neighbourhood of the
centreline, and this will be true not only for the laminar flows that we have considered,
but also for large-eddy simulations of turbulent flows, a subject of great interest at
the present time. The mechanisms that are responsible for this are straightforward,
analogous to those that create a bath-tub vortex, but do not appear to have been
considered before.
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Experimental manifestation of swirl generation, albeit unexplained, is reported
in Dunlap et al. (1990). In the cold-flow simulations of that study, a significant
circumferential velocity field was observed, although the chamber was nominally
symmetric. This is indicated schematically (Dunlap et al. 2000, figure 6) as a simple
swirling flow (n = 0), but the velocity was only measured in a single longitudinal
plane, and so such measurements cannot distinguish n = 0 swirl from n = 2, 4, . . .
swirl.

The response of the flow field to a small disturbance of increasing amplitude is
not conventional. Very small disturbances, those for which εRe is small, give rise to a
linear response everywhere. But this does not grow uniformly as ε is increased until
a nonlinear description prevails. Instead, a domain of radius O(

√
ε) develops in the

neighbourhood of the centreline within which the response is O(1), outside of which it
remains small. Ultimately the response everywhere in the chamber becomes nonlinear
because of the growth of this domain, the nonlinear patch.

This work was supported by AFOSR (JB, MS) and by the U.S. Department of
Energy through the University of California under Subcontract number B341494
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